Laplace distribution: Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Laplace or the double exponential distributiondistribution
Description
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Laplace distribution.
The functions Se_lap, re_lap, hce_lap, and ae_lap provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Laplace distribution and \(\delta\).
Arguments
alpha
The location parameter of the Laplace distribution (\(\alpha\in\left(-\infty,+\infty\right)\)).
beta
The strictly positive scale parameter of the Laplace distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Laplace distribution:
$$
f(x)=\frac{1}{2\beta}e^{\frac{-|x-\alpha|}{\beta}},
$$
where \(x\in\left(-\infty,+\infty\right)\), \(\alpha\in\left(-\infty,+\infty\right)\) and \(\beta > 0\).
References
Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973-982.